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--- Mapped lane path based pure-pursuit
controller trajectory

--- Machine-learned model (RasterNet)
trajectory with position uncertainties

--- Pure-pursuit trajectory obtained by
combining the mapped lane path
information and learned trajectory

IEEE ITSC 2020

Trajectory Prediction
For Autonomous
Driving

Kinematic controller-based trajectories
tracking lane paths tend to be less
accurate in the short term (e.g., the
trajectory cuts too wide in the figure).

Machine-learned trajectories tend to be
less accurate in the long term (e.g., the
trajectory overshoots the road in the
figure).

In this work, we focus on combining
mapped lane path information with
machine-learned trajectories in an
uncertainty-aware framework to produce
a spatial path that more accurately
represents motion patterns of vehicles.
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Framework

T=(m, Z,, pt)t=1H is a spatial-temporal trajectory
p, is the vehicle shape polygon at time ¢

% is a lane-path polyline

We assume Gaussian distribution
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Motivation

Learned trajectories (T) are short

They could also be less reliable in large
time-horizons, but more reliable in short-term
Lane/goal paths (%) are longer, and capture
discrete long-term intents that govern vehicle
motion



Description

A
Problem
ks,
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Learned trajectories (7) are short
They could also be less reliable in large
time-horizons, but more reliable in short-term
Lane paths (%) are longer, and capture discrete
long-term intents that govern vehicle motion
How to develop long-term trajectories S from 75'
and 97?

IEEE ITSC 2020



IEEE ITSC 2020

Desired
Properties of S

Prefix must interpolate between T and % but
must preferably be closer to T




Desired
Properties of S

Prefix must interpolate between T and %
The interpolant prefix ends (#) at the last
compatible waypoint (w.r.t. 9
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Desired
Properties of S

Prefix must interpolate between T and %

The interpolant prefix ends (e) at the last
compatible waypoint (w.r.t. 9

The rest ofS (suffix) eventually must converge
to 9

IEEE ITSC 2020



Desired
Properties of S

To produce the long-term trajectory, we first
produce a spatial-path (henceforth referred to
asS) and then produce a trajectory from it
using a physics-based controller

IEEE ITSC 2020



Problem Formulation

Conditioned on a goal G and waypoint parameters g and :
3 of a trajectory 7, we would like to find the most likely i
position y of the resulting path prefix waypoint. To that end, '

we propose to solve the following optimization problem, S/ et o
) e e B T
argmax logP(y | p, X) — =|ly — g (y)lI?, ey
I ¥ p,2) -5l | (= L
where IIg(y) denotes the projection of y onto the goal path i /

G, and A > 0 is a parameter that controls the cost of goal

deviation. !
We employ an alternating minimization procedure to

solve this optimization problem. We alternate between

finding the projection and finding the optimum of the

objective using a fixed projection.

IEEE ITSC 2020 10
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Resulting
Solution

The solutionS* interpolates between T and %
for the entire duration of T if we use the same A
for all waypoints

11
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Resulting
Solution

The solutionS* interpolates between T and %
for the entire duration of T if we use the same A
for all waypoints

S is the desired solution

12
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Resulting
Solution

How to produceS?
Determine ¢ and make suffix converge to ¢
over time

¢ is the “break-away” point (when the solution
path diverges from T)

13
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Resulting
Solution

How to produceS?
Determine ¢ and make suffix converge to &
over time

¢ is the “break-away” point T (when the
solution path diverges from T)

To determine T, we need a measure of

compatibility between the waypoints and % y



Waypoint compatibility score
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1) Waypoint compatibility score: Let S(w¢,G) € [0,1]
denote a compatibility score of the waypoint w; w.rt. G,
determined using the actor position distribution N (., X;),
a 2-D polygon representation of their shape at time step
t (denoted by P;), and the goal G. The waypoint w; is
considered close to G iff S(w;,G) > «a, where a € (0,1) is
a fixed compatibility threshold.

15



Waypoint compatibility score

Assumption #1

Actors are rigid body objects

IEEE ITSC 2020
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Waypoint compatibility score

Assumption #1

Actors are rigid body objects
- - - Is the control point position uncertainty

IEEE ITSC 2020
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Waypoint compatibility score

Assumption #1

Actors are rigid body objects

- - - is the control point position uncertainty
It can be used to estimate the

position uncertainty of any

point on the actor’s body

IEEE ITSC 2020
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Waypoint compatibility score

Let p be any point on the actor’s body, and Ajy
N (p, X;) represent the position uncertainty distribution of p,
where 0 are the distribution parameters. Let Dy, (X) = ||x —

p||2t_1 represent the Mahalanobis distance of some point

x from AXjp, and nge (P) = argming.g Dx,(g) denote a
function that computes the closest point on G from p based
on the Mahalanobis distance, where ||v]q := /v Qv.

IEEE ITSC 2020
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Waypoint compatibility score

A is the closest point on the blue goal
path w.r.t. the Mahalanobis Distance
evaluated using the point p and

its uncertainty distribution (- -)

IEEE ITSC 2020
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Waypoint compatibility score

B is the closest point from p w.r.t.
the Euclidean L2 distance

IEEE ITSC 2020
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Waypoint compatibility score

S(Xy,G) = 1-prob. mass in shaded region

Null hypothesis: A is a sample

drawn from the position

uncertainty distribution of p
Compatibility score: p-value /

-~
©
N O

IEEE ITSC 2020

D
A= Hg B (p)
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Waypoint compatibility score
Assumption #2

The wheelbase of the average vehicle is smaller than the average road curve
radius

Aeelbase

IEEE ITSC 2020
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Waypoint compatibility score
Assumption #2

The wheelbase of the average vehicle is smaller than the average road curve
radius
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Waypoint compatibility score

S(Wtag) = 1

IEEE ITSC 2020
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Waypoint compatibility score
S(Wt7 g) = IMaXpecp, S(Xea g)

=1 - prob. mass in region

Approximated by considering 4
corners of the shape polygon

N O

N

IEEE ITSC 2020

D
A= Il *(p)
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Waypoint compatibility score

We use S(Xp,G) to determine S(wy¢,G). If P; overlaps
the goal path polyline, we set S(w;,G) = 1. Otherwise,
S(w,G) = maxpep, S(Xp,G). Assumption (ii) enables us
to determine S(wy,G) efficiently by considering the actor
polygon vertices alone, without the need to account for the
vertices of goal polyline. Then, we define 1" as the latest
time horizon ¢ at which S(w¢, G) > a, as

T = max{t: S(w;,G) > a,t € {1,...,n}}.

IEEE ITSC 2020
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Convergence

to G

Now that we have the break-away point, how
to make S converge to 9?

28



Convergence of solution path to the goal

Let f(t) be a non-negative, monotonically decreasing
function of time. For a fixed constant ¢ > 0, we choose
the following schedule for waypoints of the solution path,

ly: — gl = cf (),
fort =T+1,...,H, where H is the prediction horizon and
gt = Ilg(y:).

IEEE ITSC 2020
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Convergence

to G

30



Developing a
path beyond T

31
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Developing a
path beyond T

32
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Developing a
path beyond T
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Developing a

path beyond T
Yi
e _ S
~ - ‘\
-~ ~.~ -
Ma(y,) RO
[ — =0 >

Initial offset is linearly decayed over distance d
with a spatial resolution of s
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Experiments

We use RasterNet to produce 6s trajectories T
Lane association produces a list of goal paths % for every vehicle actor

Baseline models
e RasterNet (RN)
e Pure-pursuit trajectories (PP, also 6s) from %
e Linear-decay stitching (LS(n)), which is an RN trajectory for the first n seconds
followed by a PP trajectory tracking % from the vehicle position at t=n
e Ballistic trajectories (rollouts of initial state using physics)
We only consider (cross-track) CT errors

Our method: US (uncertainty-aware stitching) EEE ITSC 2020
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Cross-track error (m)

IEEE ITSC 2020

0.8 =59

= PP
RN
= LS (1s)
0.6 - LS (3s)
= LS (5s)
- Ballistic
0.4
0.2
1 2 3 4 5 6

Time horizons (s)

Comparison of CT error against baselines 36



1.50 1.50

-US -PP ~ RN -LS(3s) -US -PP ~ RN -LS(3s)
~~ . — . ’—’__
E 1.25 = g
g 100 /_— s 100
(]
§ 0.75 < 075
5 0.50 5
§ ' g 0.50
O 025 5
© 025
1 2 3 4 5 6
1 2 3 4 5 6
Time horizons (s) Time horizons (s)
Comparison of CT error against baselines for Comparison of CT error against baselines for

left-turning tracks (6% of data) right-turning tracks (5.3% of data)
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Qualitative
Examples And
Conclusion

--- PP
--- Ground-truth
--- RN
-- US

IEEE ITSC 2020 38



Qualitative
Examples And
Conclusion

--- PP
--- Ground-truth
--- RN
-- US
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Qualitative
Examples And
Conclusion

--- PP
--- Ground-truth
--- RN
-- US
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