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Trajectory Prediction 
For Autonomous 
Driving

--- Ground-truth trajectory of vehicle
--- Mapped lane path based pure-pursuit 
controller trajectory
--- Machine-learned model (RasterNet) 
trajectory with position uncertainties
--- Pure-pursuit trajectory obtained by 
combining the mapped lane path 
information and learned trajectory Kinematic controller-based trajectories 

tracking lane paths tend to be less 
accurate in the short term (e.g., the 
trajectory cuts too wide in the figure).

Machine-learned trajectories tend to be 
less accurate in the long term (e.g., the 
trajectory overshoots the road in the 
figure).

In this work, we focus on combining 
mapped lane path information with 
machine-learned trajectories in an 
uncertainty-aware framework to produce 
a spatial path that more accurately 
represents motion patterns of vehicles.IEEE ITSC 2020
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Framework

𝒢

Ƭ=(μt, Σt, pt)t=1
H is a spatial-temporal trajectory

pt is the vehicle shape polygon at time t
𝒢 is a lane-path polyline
We assume Gaussian distribution
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Motivation

Learned trajectories (Ƭ) are short 
They could also be less reliable in large 
time-horizons, but more reliable in short-term
Lane/goal paths (𝒢) are longer, and capture 
discrete long-term intents that govern vehicle 
motion

𝒢1

𝒢2

𝒢3
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Problem 
Description

Learned trajectories (Ƭ) are short 
They could also be less reliable in large 
time-horizons, but more reliable in short-term
Lane paths (𝒢) are longer, and capture discrete 
long-term intents that govern vehicle motion
How to develop long-term trajectoriesＳ from Ƭ 
and 𝒢?

𝒢1

𝒢2

𝒢3

Ｓ1

Ｓ2

Ｓ3
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Desired 
Properties of Ｓ 

Prefix must interpolate between Ƭ and 𝒢 but 
must preferably be closer to Ƭ

𝒢
Ｓ
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Ƭμ
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Desired 
Properties of Ｓ 

Prefix must interpolate between Ƭ and 𝒢 
The interpolant prefix ends (  ) at the last 
compatible waypoint (w.r.t. 𝒢)

𝒢
Ｓ
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Desired 
Properties of Ｓ 

𝒢

Ｓ

Prefix must interpolate between Ƭ and 𝒢 
The interpolant prefix ends (  ) at the last 
compatible waypoint (w.r.t. 𝒢)
The rest ofＳ (suffix) eventually must converge 
to 𝒢

8IEEE ITSC 2020



Ƭμ
Σ

Desired 
Properties of Ｓ 

𝒢

Ｓ

To produce the long-term trajectory, we first 
produce a spatial-path (henceforth referred to 
asＳ) and then produce a trajectory from it 
using a physics-based controller
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Problem Formulation
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   We employ an alternating minimization procedure to 
solve this optimization problem. We alternate between 
finding the projection and finding the optimum of the 
objective using a fixed projection.
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Resulting 
Solution

𝒢

Ｓ*

The solutionＳ* interpolates between Ƭ and 𝒢 
for the entire duration of Ƭ if we use the same λ 
for all waypoints
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Resulting 
Solution

𝒢

The solutionＳ* interpolates between Ƭ and 𝒢 
for the entire duration of Ƭ if we use the same λ 
for all waypoints
Ｓ is the desired solution

Ｓ
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Resulting 
Solution

𝒢

How to produceＳ?
Determine     and make suffix converge to 𝒢 
over time
    is the “break-away” point (when the solution 
path diverges from Ƭ)

13IEEE ITSC 2020
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Resulting 
Solution

𝒢

How to produceＳ?
Determine     and make suffix converge to 𝒢 
over time
    is the “break-away” point T (when the 
solution path diverges from Ƭ)
To determine T, we need a measure of 
compatibility between the waypoints and 𝒢
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Waypoint compatibility score
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Waypoint compatibility score
Assumption #1

Actors are rigid body objects
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Waypoint compatibility score
Assumption #1

Actors are rigid body objects
- - - is the control point position uncertainty

17IEEE ITSC 2020



Waypoint compatibility score
Assumption #1

Actors are rigid body objects
- - - is the control point position uncertainty
It can be used to estimate the
position uncertainty of any
point on the actor’s body
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Waypoint compatibility score
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Waypoint compatibility score

A is the closest point on the blue goal
path w.r.t. the Mahalanobis Distance
evaluated using the point p and 
its uncertainty distribution (- -)

p

A =
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Waypoint compatibility score

B is the closest point from p w.r.t.
the Euclidean L2 distance

A

p B
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Waypoint compatibility score

                        1 - prob. mass in shaded region

Null hypothesis: A is a sample
drawn from the position
uncertainty distribution of p
Compatibility score: p-value

A =

p
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Waypoint compatibility score
Assumption #2

The wheelbase of the average vehicle is smaller than the average road curve 
radius

23IEEE ITSC 2020
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Waypoint compatibility score
Assumption #2

The wheelbase of the average vehicle is smaller than the average road curve 
radius
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Waypoint compatibility score

                        1
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Waypoint compatibility score

                   = 1 - prob. mass in shaded region

Approximated by considering 4
corners of the shape polygon

A =

p
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Waypoint compatibility score
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Convergence 
to 𝒢

𝒢

Now that we have the break-away point, how 
to make Ｓ converge to 𝒢?

Ｓ
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Convergence of solution path to the goal
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Convergence 
to 𝒢

𝒢

Ｓ
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Developing a 
path beyond Ƭ 

𝒢

Ｓ
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Developing a 
path beyond Ƭ 

𝒢

Ｓ
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Developing a 
path beyond Ƭ 

𝒢

Ｓ
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Developing a 
path beyond Ƭ 

d

ΠG(yt)

yt

s

Initial offset is linearly decayed over distance d 
with a spatial resolution of s
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Experiments
We use RasterNet to produce 6s trajectories Ƭ

Lane association produces a list of goal paths 𝒢 for every vehicle actor

Baseline models
● RasterNet (RN)
● Pure-pursuit trajectories (PP, also 6s) from 𝒢
● Linear-decay stitching (LS(n)), which is an RN trajectory for the first n seconds 

followed by a PP trajectory tracking 𝒢 from the vehicle position at t=n 
● Ballistic trajectories (rollouts of initial state using physics)

We only consider (cross-track) CT errors 

Our method: US (uncertainty-aware stitching) 35IEEE ITSC 2020



Comparison of CT error against baselines 36IEEE ITSC 2020



Comparison of CT error against baselines for 
left-turning tracks (6% of data)
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Comparison of CT error against baselines for 
right-turning tracks (5.3% of data)
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--- PP 
--- Ground-truth
--- RN
--- US
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Qualitative 
Examples And 
Conclusion
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--- PP 
--- Ground-truth
--- RN
--- US
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Examples And 
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--- PP 
--- Ground-truth
--- RN
--- US
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Qualitative 
Examples And 
Conclusion
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